Cellular Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective
نویسندگان
چکیده
Entangling and twisting of cellular DNA (i.e., supercoiling) are problems inherent to the helical structure of double-stranded DNA. Supercoiling affects transcription, DNA replication, and chromosomal segregation. Consequently the cell must fine-tune supercoiling to optimize these key processes. Here, we summarize how supercoiling is generated and review experimental and theoretical insights into supercoil relaxation. We distinguish between the passive dissipation of supercoils by diffusion and the active removal of supercoils by topoisomerase enzymes. We also review single-molecule studies that elucidate the timescales and mechanisms of supercoil removal.
منابع مشابه
Intercalation-Based Single-Molecule Fluorescence Assay To Study DNA Supercoil Dynamics.
DNA supercoiling crucially affects cellular processes such as DNA replication, gene expression, and chromatin organization. However, mechanistic understanding of DNA supercoiling and the related DNA-processing enzymes has remained limited, mainly due to the lack of convenient experimental tools to probe these phenomena. Here, we report a novel high-throughput single-molecule assay for real-time...
متن کاملAnalysis of the eukaryotic topoisomerase II DNA gate: a single-molecule FRET and structural perspective
Type II DNA topoisomerases (topos) are essential and ubiquitous enzymes that perform important intracellular roles in chromosome condensation and segregation, and in regulating DNA supercoiling. Eukaryotic topo II, a type II topoisomerase, is a homodimeric enzyme that solves topological entanglement problems by using the energy from ATP hydrolysis to pass one segment of DNA through another by w...
متن کاملSingle-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling.
Many complex cellular processes in the cell are catalysed at the expense of ATP hydrolysis. The enzymes involved bind and hydrolyse ATP and couple ATP hydrolysis to the catalysed process via cycles of nucleotide-driven conformational changes. In this review, I illustrate how smFRET (single-molecule fluorescence resonance energy transfer) can define the underlying conformational changes that dri...
متن کاملStructure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States
Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the supercoiling degree of defined genome regions may change according to physiological and environmental conditions. Elucidation of structural properties...
متن کاملSingle-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 142 شماره
صفحات -
تاریخ انتشار 2010